#### Pavel Solin Integral Methods in Low-Frequency Electromagnetics

A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods Indirect solutions of electromagnetic fields by the boundary element method Integral equations in the solution of selected coupled problems Numerical methods for integral equations All computations presented in the book are done by means of the authors' own codes, and a significant amount of their own results is included. At the book's end, they also discuss novel integral techniques of a higher order of accuracy, which are representative of the future of this rapidly advancing field. Integral Methods in Low-Frequency Electromagnetics is of immense interest to members of the electrical engineering and applied mathematics communities, ranging from graduate students and PhD candidates to researchers in academia and practitioners in industry.

/ / похожие

Подробнее#### Paula Whitlock A. Monte Carlo Methods, Volume 1

This introduction to Monte Carlo Methods seeks to identify and study the unifying elements that underlie their effective application. It focuses on two basic themes. The first is the importance of random walks as they occur both in natural stochastic systems and in their relationship to integral and differential equations. The second theme is that of variance reduction in general and importance sampling in particular as a technique for efficient use of the methods. Random walks are introduced with an elementary example in which the modelling of radiation transport arises directly from a schematic probabilistic description of the interaction of radiation with matter. Building on that example, the relationship between random walks and integral equations is outlined. The applicability of these ideas to other problems is shown by a clear and elementary introduction to the solution of the Schrodinger equation by random walks. The detailed discussion of variance reduction includes Monte Carlo evaluation of finite-dimensional integrals. Special attention is given to importance sampling, partly because of its intrinsic interest in quadrature, partly because of its general usefulness in the solution of integral equations. One significant feature is that Monte Carlo Methods treats the «Metropolis algorithm» in the context of sampling methods, clearly distinguishing it from importance sampling. Physicists, chemists, statisticians, mathematicians, and computer scientists will find Monte Carlo Methods a complete and stimulating introduction.

/ / похожие

Подробнее#### Screw propeller hurom slow juicers parts for hurom HU-500DG HU-780 HU-700-PLUS HU-1100/910/HU19SGM/800/600WN for Juicer Blender

#### 2pcs/set cleaning brush for hurom slow juicer spare parts HU-600WN hh-sbf11 hu-19sgm HU-100 HU-200 HU-300 etc

#### Folding Trash Can Car Recycle Bin Trash Bin Kitchen Dustbin Waste Bin Rubbish Bin Garbage Bin Can Waste Bin for Kitchen Recycle

#### Группа авторов Water Waves

Offers an integrated account of the mathematical hypothesis of wave motion in liquids with a free surface, subjected to gravitational and other forces. Uses both potential and linear wave equation theories, together with applications such as the Laplace and Fourier transform methods, conformal mapping and complex variable techniques in general or integral equations, methods employing a Green's function. Coverage includes fundamental hydrodynamics, waves on sloping beaches, problems involving waves in shallow water, the motion of ships and much more.

/ / похожие

Подробнее#### Michael Todinov Reliability and Risk Models

A comprehensively updated and reorganized new edition. The updates include comparative methods for improving reliability; methods for optimal allocation of limited resources to achieve a maximum risk reduction; methods for improving reliability at no extra cost and building reliability networks for engineering systems. Includes: A unique set of 46 generic principles for reducing technical risk Monte Carlo simulation algorithms for improving reliability and reducing risk Methods for setting reliability requirements based on the cost of failure New reliability measures based on a minimal separation of random events on a time interval Overstress reliability integral for determining the time to failure caused by overstress failure modes A powerful equation for determining the probability of failure controlled by defects in loaded components with complex shape Comparative methods for improving reliability which do not require reliability data Optimal allocation of limited resources to achieve a maximum risk reduction Improving system reliability based solely on a permutation of interchangeable components

/ / похожие

Подробнее#### Jian-Ming Jin Theory and Computation of Electromagnetic Fields

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

/ / похожие

Подробнее#### Y. Zhang Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain

A step-by-step guide to parallelizing cem codes The future of computational electromagnetics is changing drastically as the new generation of computer chips evolves from single-core to multi-core. The burden now falls on software programmers to revamp existing codes and add new functionality to enable computational codes to run efficiently on this new generation of multi-core CPUs. In this book, you'll learn everything you need to know to deal with multi-core advances in chip design by employing highly efficient parallel electromagnetic code. Focusing only on the Method of Moments (MoM), the book covers: In-Core and Out-of-Core LU Factorization for Solving a Matrix Equation A Parallel MoM Code Using RWG Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers A Parallel MoM Code Using Higher-Order Basis Functions and ScaLAPACK-Based In-Core and Out-of-Core Solvers Turning the Performance of a Parallel Integral Equation Solver Refinement of the Solution Using the Conjugate Gradient Method A Parallel MoM Code Using Higher-Order Basis Functions and Plapack-Based In-Core and Out-of-Core Solvers Applications of the Parallel Frequency Domain Integral Equation Solver Appendices are provided with detailed information on the various computer platforms used for computation; a demo shows you how to compile ScaLAPACK and PLAPACK on the Windows® operating system; and a demo parallel source code is available to solve the 2D electromagnetic scattering problems. Parallel Solution of Integral Equation-Based EM Problems in the Frequency Domain is indispensable reading for computational code designers, computational electromagnetics researchers, graduate students, and anyone working with CEM software.

/ / похожие

Подробнее#### for Hurom HH/HG Elite Slow Juicer Spare Parts Hurom Hu-600Wn Huo15Fr Hh-Sbf11 Hu-19Sgm Hu-1100Wn Rotating Brush Holder Complete

#### Группа авторов Relative Fidelity Processing of Seismic Data

This book presents a comprehensive overview of relative fidelity preservation processing methods and their applications within the oil and gas sector. Four key principles for wide-frequency relative fidelity preservation processing are illustrated throughout the text. Seismic broadband acquisition is the basis for relative fidelity preservation processing and the influence of seismic acquisition on data processing is also analyzed. The methods and principles of Kirchhoff integral migration, one-way wave equation migration and reverse time migration are also introduced and illustrated clearly. Current research of relative amplitude preservation migration algorithms is introduced, and the corresponding numerical results are also shown. RTM (reverse time migration) imaging methods based on GPU/CPU systems for complicated structures are represented. This includes GPU/CPU high performance calculations and its application to seismic exploration, two-way wave extrapolation operator and boundary conditions, imaging conditions and low frequency noise attenuation, and GPU/CPU system based RTM imaging algorithms. Migration velocity model building methods in depth domain for complicated structures are illustrated in this book. The research status and development of velocity model building are introduced. And the impacting factors are also discussed. Several different velocity model building methods are also represented and analyzed. The book also provides the reader with several case studies of field seismic data imaging in different kinds of basins to show the methods used in practice.

/ / похожие

Подробнее#### Mark S Swanson Path Integral Quantization

This book is a self-contained and concise introduction to the techniques and applications of path integral quantization and functional techniques, aimed at students and practitioners. The first half of the text focuses on quantum mechanics, including a review of the action formulation of classical mechanics and quantum mechanics in the Dirac operator and state formalism, and further examination of the path integral. The second part examines relativistic field theories, reviewing special relativity, as well as derivation of the path integral representation of the vacuum transition element for quantized scalar, spinor, and vector fields from the coherent state representation of the respective field theories. Key Features Concise introduction to the derivation and methods of path integral approaches to quantum mechanics and quantum field theory.Self-contained guide for students and practitioners

/ / похожие

Подробнее#### Er-Ping Li Electrical Modeling and Design for 3D System Integration. 3D Integrated Circuits and Packaging, Signal Integrity, Power Integrity and EMC

New advanced modeling methods for simulating the electromagnetic properties of complex three-dimensional electronic systems Based on the author's extensive research, this book sets forth tested and proven electromagnetic modeling and simulation methods for analyzing signal and power integrity as well as electromagnetic interference in large complex electronic interconnects, multilayered package structures, integrated circuits, and printed circuit boards. Readers will discover the state of the technology in electronic package integration and printed circuit board simulation and modeling. In addition to popular full-wave electromagnetic computational methods, the book presents new, more sophisticated modeling methods, offering readers the most advanced tools for analyzing and designing large complex electronic structures. Electrical Modeling and Design for 3D System Integration begins with a comprehensive review of current modeling and simulation methods for signal integrity, power integrity, and electromagnetic compatibility. Next, the book guides readers through: The macromodeling technique used in the electrical and electromagnetic modeling and simulation of complex interconnects in three-dimensional integrated systems The semi-analytical scattering matrix method based on the N-body scattering theory for modeling of three-dimensional electronic package and multilayered printed circuit boards with multiple vias Two- and three-dimensional integral equation methods for the analysis of power distribution networks in three-dimensional package integrations The physics-based algorithm for extracting the equivalent circuit of a complex power distribution network in three-dimensional integrated systems and printed circuit boards An equivalent circuit model of through-silicon vias Metal-oxide-semiconductor capacitance effects of through-silicon vias Engineers, researchers, and students can turn to this book for the latest techniques and methods for the electrical modeling and design of electronic packaging, three-dimensional electronic integration, integrated circuits, and printed circuit boards.

/ / похожие

Подробнее#### Dustbin For Room Trash Bin Bathroom Kitchen Waste Storage Bin Home Office Trash Can Garbage Bin Plastic Hollow Waste Bucket 15

#### Ilya Prigogine Monte Carlo Methods in Chemical Physics

In Monte Carlo Methods in Chemical Physics: An Introduction to the Monte Carlo Method for Particle Simulations J. Ilja Siepmann Random Number Generators for Parallel Applications Ashok Srinivasan, David M. Ceperley and Michael Mascagni Between Classical and Quantum Monte Carlo Methods: «Variational» QMC Dario Bressanini and Peter J. Reynolds Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics M. P. Nightingale and C.J. Umrigar Adaptive Path-Integral Monte Carlo Methods for Accurate Computation of Molecular Thermodynamic Properties Robert Q. Topper Monte Carlo Sampling for Classical Trajectory Simulations Gilles H. Peslherbe Haobin Wang and William L. Hase Monte Carlo Approaches to the Protein Folding Problem Jeffrey Skolnick and Andrzej Kolinski Entropy Sampling Monte Carlo for Polypeptides and Proteins Harold A. Scheraga and Minh-Hong Hao Macrostate Dissection of Thermodynamic Monte Carlo Integrals Bruce W. Church, Alex Ulitsky, and David Shalloway Simulated Annealing-Optimal Histogram Methods David M. Ferguson and David G. Garrett Monte Carlo Methods for Polymeric Systems Juan J. de Pablo and Fernando A. Escobedo Thermodynamic-Scaling Methods in Monte Carlo and Their Application to Phase Equilibria John Valleau Semigrand Canonical Monte Carlo Simulation: Integration Along Coexistence Lines David A. Kofke Monte Carlo Methods for Simulating Phase Equilibria of Complex Fluids J. Ilja Siepmann Reactive Canonical Monte Carlo J. Karl Johnson New Monte Carlo Algorithms for Classical Spin Systems G. T. Barkema and M.E.J. Newman

/ / похожие

Подробнее#### Ulrich L. Rohde Introduction to Integral Calculus

An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with clear, simple explanations, the authors reinforce new concepts to progressively build skills and knowledge, and numerous real-world examples as well as intriguing applications help readers to better understand the connections between the theory of calculus and practical problem solving. The first six chapters address the prerequisites needed to understand the principles of integral calculus and explore such topics as anti-derivatives, methods of converting integrals into standard form, and the concept of area. Next, the authors review numerous methods and applications of integral calculus, including: Mastering and applying the first and second fundamental theorems of calculus to compute definite integrals Defining the natural logarithmic function using calculus Evaluating definite integrals Calculating plane areas bounded by curves Applying basic concepts of differential equations to solve ordinary differential equations With this book as their guide, readers quickly learn to solve a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Integral Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.

/ / похожие

Подробнее#### 6 Pack Thickened Compost Bin Filters Activated Carbon Filters for Kitchen Compost Bin Filters Replacement, 10 mm Thickness, 6.75

#### Fashion-6 Pack Thickened Compost Bin Filters Activated Carbon Filters for Kitchen Compost Bin Filters Replacement, 10 mm Thickne

#### 6 Pack Thickened Compost Bin Filters Activated Carbon Filters for Kitchen Compost Bin Filters Replacement, 10 mm Thickness, 6.75

#### Ping Huang Numerical Calculation of Lubrication. Methods and Programs

Focusing on basic lubrication problems this book offers specific engineering applications. The book introduces methods and programs for the most important lubrication problems and their solutions. It is divided into four parts. The first part is about the general solving methods of the Reynolds equation, including solutions of Reynolds equations with different conditions and their discrete forms, such as a steady-state incompressible slider, journal bearing, dynamic bearing, gas bearing and grease lubrication. The second part gives the ‘energy equation solution’. The third part introduces methods and programs for elasto-hydrodynamic lurbication, which links the Reynolds equation with the elastic deformation equation. The final part presents application lubrication programs used in engineering. Provides numerical solution methodologies including appropriate software for the hydrodynamic and elasto-hydrodynamic lubrication of bearings Offers a clear introduction and orientation to all major engineering lubrication problems and their solutions Presents numerical programs for specific applications in engineering, with special topics including grease-lubricated bearings and gas bearings Equips those working in tribology and those new to the topic with the fundamental tools of calculation Downloadable programs are available at the companion website With an emphasis on clear explanations, the text offers a thorough understanding of the numerical calculation of lubrication for graduate students on tribology and engineering mechanics courses, with more detailed materials suitable for engineers. This is an accessible reference for senior undergraduate students of tribology and researchers in thin-film fluid mechanics.

/ / похожие

Подробнее